Extensions 1→N→G→Q→1 with N=C8 and Q=C22

Direct product G=N×Q with N=C8 and Q=C22
dρLabelID
C22×C832C2^2xC832,36

Semidirect products G=N:Q with N=C8 and Q=C22
extensionφ:Q→Aut NdρLabelID
C8⋊C22 = C8⋊C22φ: C22/C1C22 ⊆ Aut C884+C8:C2^232,43
C82C22 = C2×D8φ: C22/C2C2 ⊆ Aut C816C8:2C2^232,39
C83C22 = C2×SD16φ: C22/C2C2 ⊆ Aut C816C8:3C2^232,40
C84C22 = C2×M4(2)φ: C22/C2C2 ⊆ Aut C816C8:4C2^232,37

Non-split extensions G=N.Q with N=C8 and Q=C22
extensionφ:Q→Aut NdρLabelID
C8.C22 = C8.C22φ: C22/C1C22 ⊆ Aut C8164-C8.C2^232,44
C8.2C22 = D16φ: C22/C2C2 ⊆ Aut C8162+C8.2C2^232,18
C8.3C22 = SD32φ: C22/C2C2 ⊆ Aut C8162C8.3C2^232,19
C8.4C22 = Q32φ: C22/C2C2 ⊆ Aut C8322-C8.4C2^232,20
C8.5C22 = C2×Q16φ: C22/C2C2 ⊆ Aut C832C8.5C2^232,41
C8.6C22 = C4○D8φ: C22/C2C2 ⊆ Aut C8162C8.6C2^232,42
C8.7C22 = C8○D4φ: C22/C2C2 ⊆ Aut C8162C8.7C2^232,38
C8.8C22 = M5(2)central extension (φ=1)162C8.8C2^232,17

׿
×
𝔽